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Abstract
Extensive growth in the field of molecular biology in recent decades has led to the development of
new and powerful experimental and computational tools that enable the analysis of complex
biological responses to chemical exposure on both a functional and structural genetic level. The
ability to profile global responses on a transcriptional level has become a valuable resource in the
science of toxicology and attempts are currently being made to further understand toxicity
mechanisms by incorporating metabolomics and proteomics approaches. In addition, recent progress
in understanding the extent of the genetic diversity within and between species allows us to take a
fresh look at research on genetic polymorphisms which may influence an individual’s susceptibility
to toxicity. While new technologies have the potential to make a sizeable impact on our understanding
of the mechanisms of toxicity, considerable challenges remain to be addressed, especially with
regards to the regulatory acceptance and successful integration of omics data. This review highlights
recent advancements in the application of functional and structural genomics techniques to chemical
hazard identification and characterization, and to the understanding of the inter-individual differences
in susceptibility to adverse drug reactions.
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1. Introduction
Advances in genomics in recent decades have led to exponential growth in the understanding
of genome structure and function in both humans and other organisms. Due to the wealth of
resources available, including databases of sequence variation and transcriptional changes
following chemical exposure, both the industry and the federal government have begun to
invest more resources into using genomic tools to improve drug development and drug and
chemical safety evaluation. Systems toxicology, or the integration of traditional toxicology
approaches with the development and implementation of toxicogenomics, proteomics, and
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metabolomics, offers the promise of the development of novel reliable toxicity biomarkers and
more accurate predictions of adverse health effects in humans.

The need for development of sensitive biomarkers to predict drug toxicity was recently
reinforced by the Food and Drug Administration (FDA) Critical Path Initiative which
emphasizes the development of diagnostic tests to improve clinical trials and post-market
surveillance1. In 2005, the FDA released a final guidance document on genomic data
submissions, Guidance for Industry: Pharmacogenomic Data Submissions2, and announced
the creation of a new FDA program entitled the Interdisciplinary Pharmacogenomic Review
Group3. The importance of genomic information in FDA regulatory decisions is reflected in
the increasing voluntary inclusion of these types of data in FDA submissions3. To establish
reliable protocols for data analysis and quality control in genomics studies, several consortia
have been established which included the academia, industry, FDA, Environmental Protection
Agency, the National Institute of Standards and Technology, and the National Institutes of
Health4–6. In the near future, a strong understanding of genomic data and its potential uses
will be critical to the drug development process and clinical practice. The literature reviewed
here focuses on the current progress in the application of genomic and genetic data to drug
safety and highlights recent successes and current knowledge gaps in the following areas: 1)
the discovery of toxicity biomarkers and identification of compounds that are predicted to cause
toxicity, 2) the identification of susceptible individuals, and 3) integration of various omics
datasets to improve understanding of toxicity mechanisms within a biological system.

2. Functional Genomics Strategies
2.1 Functional genomics allows for global gene transcript profiling

The major challenge of toxicology today is the ability to extrapolate risk from experimental
systems to human populations. Rodents are most frequently used for in vivo toxicity testing,
yet there often are major differences in clearance, metabolic activity of enzymes and other key
factors between species. While it is difficult to directly translate rodent findings to human
population, human testing is most often not an option and the answer to this problem is to
develop biomarkers of toxicity that are sub-clinical and that can be assayed from a non-invasive
tissue. The promise of toxicogenomics is to identify gene expression patterns or signatures that
will indicate an adverse health event at low doses. However, to do this, it needs to be determined
which changes and pathways are best associated with impending pathology vs. benign adaptive
changes that are responsive to the chemical but are not associated with toxicity.

At the forefront of these emerging technologies is the use of functional genomics or analysis
of molecular perturbations as measured by transcriptomics assayed by microarray technology.
Gene expression analysis using current microarray platforms that encompass whole genomes
allows for a comprehensive picture of cellular responses7, especially when examined in concert
with proteomic and metabolomic data. While early microarray experiments were often
criticized as “fishing expeditions”, current testing strategies enable the generation of testable
hypothesis that aid in understanding the mechanism of toxicity8. The ultimate value of using
transcript profiling data within the context of systems toxicology is that responses that are
predictive of cellular injury can be sampled across doses, time points, and species, facilitating
risk extrapolation to human populations.

2.2 Improving safety assessment through genomic profiling
Microarray profiling has become a major omics tool for the characterization of drug toxicities
by allowing for large-scale determination of gene expression changes associated with a defined
pathology. A key step in toxicogenomics is the ability to link a chemical-elicited phenotype
with gene expression changes, termed “phenotypic anchoring”9. Experimentally determined
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gene expression signatures can serve as a guide to determining biomarkers that are indicative
of toxicological responses that may be as-yet sub-clinical, with no observable morphological
changes10. To confirm the utility of the approach, Heinloth et al.11 demonstrated that patterns
of gene expression perturbations observed at sub-toxic doses of acetaminophen in rats may
indicate subtle cellular injury that was not detectable by histopathology or clinical chemistry
methods within the liver. At toxic doses, expression changes in the same subset of genes
associated with mitochondrial dysfunction and oxidative stress were more exaggerated and
changes were detected in additional genes associated with these processes. These data indicate
that gene expression profiling has the potential to identify subtle markers of cellular injury that
precipitate overt organ toxicity.

2.3 Identification of biomarkers of toxicity
Identification of sensitive biomarkers that will assist in monitoring drug therapy for evidence
of toxicity or therapeutic outcome, and (in acute poisoning cases) to predict exposure levels,
is a critical gap where omics technologies hold promise. Genomic biomarkers of toxicity have
recently been identified for a wide variety of toxicants including nephrotoxic agents12,
testicular toxicants13, and for keratinocyte proliferation in papilloma murine skin model14, to
name only a few. The potential of using this technology to identify safety biomarkers is great
and may help to create better diagnostic tools for traditionally difficult toxicodynamic
monitoring, such as in patients receiving immunosuppressive therapy15.

The majority of recent investigations have used microarrays to study toxicity in target organ
tissue or in cultured cells. While these experiments often yield important insight into the
mechanism of toxicity, they provide limited information for monitoring drug safety in patient
populations through non-invasive means. To address this limitation, Bushel et al.16
investigated the utility of using gene expression signatures in peripheral blood as an early
indicator of pathological changes in the liver following administration of varying doses of
acetaminophen. In this study, a prediction algorithm using classifiers and a pattern-based
method that was weighted toward non-injurious exposure levels was used to discriminate sub-
toxic and toxic exposure doses. Characterization of acetaminophen-induced liver injury using
gene expression profiles derived from blood was shown to better predict acute chemical
exposure levels than clinical chemistry, hematology, or histopathology analysis, indicating that
transcript profiles derived from blood may be a good marker for specific organ toxicity.

2.4 High-throughput chemical toxicity testing is facilitated by microarrays
Microarrays have also enabled high-throughput screening of chemicals for potential toxicity.
Increased sensitivity to detect molecular signatures or “fingerprints” that are associated with
a particular class of chemicals or toxic response in both in vitro17, 18 and in vivo19, 20 systems,
coupled with data-rich output, offer promise in screening for potential adverse health effects.
In addition, approaches have been developed that do not rely upon a priori knowledge of
expression signatures using well-characterized reference compounds, instead providing an ab
initio estimation of compound-induced liver injury based upon microarray transcript
profiling21. Furthermore, gene expression profiling has been suggested to have better
predictive power than standard toxicological endpoints in a two-year rodent bioassay to detect
carcinogenic potential of compounds22.

To validate the technology as a tool that may be useful in the classification of compound
toxicity, an in vivo approach has often been utilized, in which defined organ pathology was
present. It is assumed that toxicants that elicit similar pathology or disease will elicit a common
pattern of gene expression changes. Recent studies aimed at prediction of toxicity based upon
gene expression signatures have shown some success at distinguishing between non-genotoxic
and genotoxic carcinogenic hepatotoxicants23, and renal and hepatic toxicants24, and have
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enabled classification of hepatotoxicants that are macrophage activators, peroxisome
proliferators, and oxidative stressors25.

Because an in vivo approach would be impractical for use in high-throughput toxicity screening,
in vitro culture systems offer an attractive alternative. For example, it was demonstrated that
gene expression signatures can distinguish between toxic and non-toxic chemicals in HepG2
cells26. However, until recently there was little data that suggested that toxicity signatures
determined in an in vitro system would predict in vivo responses. The Toxicogenomics Project
(TGP), a consortia composed of the Japanese National Institute of Health Sciences, the National
Institute of Biomedical Innovation, and 15 pharmaceutical companies, was developed in 2002
to address the problem of connecting model systems with prediction of toxicity in
humans27. From the data collected by the TGP on gene expression profiles collected from rat
liver and rat and human hepatocytes treated with 150 chemicals, it became clear that a major
challenge to overcome was the identification of species-specific and common responses. The
possibility of an informational bridge connecting transcript responses between rat and human
hepatocytes and rat liver in vivo was investigated after administration of coumarin27. In this
experiment, gene expression profiles were compared first between in vivo rat liver samples and
coumarin-treated rat hepatocytes to determine those genes that were induced by treatment and
that were significant in both models and that served as an in vivo-in vitro bridge. Orthologous
bridging genes were then measured in coumarin-treated human hepatocytes and a signature of
14 up-regulated and 11 down-regulated mRNA transcripts was identified. While more data is
needed to connect species and model systems with risk assessment to humans, the approach
represents an important step in enabling high-throughput chemical toxicity screening.

The ability of traditional cell cultures of primary or cultured cells to predict toxicity can also
suffer from an inability to accurately model multi-cellular processes and the myriad effects of
cell-cell communication. A precision-cut liver slice model was suggested as a promising model
system28. Liver slices offer the advantage of containing all relevant cell types within their
original spatial arrangements in which cellular communication is maintained29. The presence
of all relevant cell types is particularly important because liver non-parenchymal have been
linked to the mediation of liver toxicity for diverse chemicals such as alcohol30, 31,
cyclohexamide32, thioacetamide33, and acetaminophen34. Prototype experiments using rat
liver slices demonstrated good prediction for toxicity and pathology based on microarray data
for liver slices treated with acetaminophen, lipopolysaccharide, and carbon tetrachloride and
these data correlated well with in vivo profiles28; however experiments using human liver
slices are needed to enhance risk estimates.

2.5 Pathway analysis aids in determination of the mode of action
A major knowledge gap in connecting gene expression profiles to classes of toxicants that elicit
similar phenotypes is a lack of complete information on the complexity of cellular molecular
pathways. Regulation of responses can be relatively straightforward (i.e., at the transcriptional
level), but it can also be quite complex and controlled by multiple genes, proteins, and
metabolites. Therefore, accurate identification of gene-gene interactions and regulation is
essential for determining well-defined pathways that could serve as potential targets in
therapeutic development or intervention. The importance of understanding subtle pathway
changes and the need for applying such data to risk assessment have been underlined in the
recent National Research Council’s report entitled “Toxicity Testing in the 21st Century”35.
Transcriptional pathway-level analysis may prove essential for determining molecular
perturbations that are associated with sub-clinical pathologies because alterations in gene
expression are likely to be a more sensitive endpoint than the clinically observed toxicity.

There are several public databases available which aid in the annotation and interpretation of
gene expression data in terms of cellular process, functions, and pathways. These databases
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include the Gene Ontology (GO; www.geneontology.org), Gene Map Annotator and Pathway
Profiler (www.genmapp.org), the Science Signaling Connections Map
(stke.sciencemag.org/cm/), BioCarta (www.biocarta.com/genes/index.asp), Reactome
(www.genomeknowledge.org), and KEGG (www.genome.jp/kegg/pathway.html). Most
often, these tools are used to associate a set of differentially expressed genes from a microarray
experiment with a particular pathway with the goal of identifying key modes of action. Several
groups have developed statistical methods for associating cellular pathways and annotations
with gene expression changes such as GOMiner36, Significance Analysis of Functional
Categories37, and Onto-Tools38. While the methods employed by these statistical techniques
vary, each is aimed at assigning biological meaning to gene expression data. A broad
understanding of the pathways affected by a variety of xenobiotics is essential for the future
of drug safety assessment. A complete understanding of the molecular perturbations that
precipitate a toxic pathology in vivo will enable a shift from high dose to low dose testing and
may enable a better prediction of pathology from in vitro data when the same molecular
pathways are affected.

3. Structural Genomics
3.1 Identifying sensitive individuals

Toxicogenetics is a discipline that evaluates genetic sequence variations that may impact
individual’s susceptibility to toxicity. In the pharmaceutical arena, these efforts are largely
aimed at identification of susceptible individuals within the population that enables
personalized drug treatment and improves drug safety. It is well accepted that genetic variants
affect responses to drugs39, 40. One of the first studies in this field compared plasma drug
half-lives in identical and fraternal twin pairs and showed that greater differences existed
between fraternal twins41. Recently, several more monogenic toxicogenetic traits have been
reported42. Such research has yielded some success into the identification of genetic alleles
that predict drug responses, for example it has been demonstrated that apolipoprotein E
(APOE)-4/4 allele carriers are the worst responders to conventional Alzheimer’s disease
treatments43.

Successes in this field have led to important regulatory action by the FDA that has allowed a
number of drugs to remain on the market due to the availability of genetic testing. Current
genetic tests include assigning the dose of 6-mercaptopurine based on the genotype of
thiopurine S-methyltransferase (TPMT)44, 45, and the dose of warfarin based on the genotypes
of vitamin K epoxide reductase complex (VKORC1)46 and CYP2C947. In the case of the anti-
coagulant drug warfarin, the combination of VKORC1 haplotyping and CYP2C9 genotyping
explained an estimated 25% and 6–10% of the variance in warfarin dose, respectively48. In
fact, warfarin represents one of the first drugs for which toxicogenetic information (by
VKORC1 haplotyping) better explained the dose variance than pharmacokinetic
pharmacogenomic data (through CYP2C9 genotyping)49. The data on warfarin, therefore,
represents a shift from monogenic toxicogenetic testing to a polygenic model, which is
expected to be encountered with increasing frequency as research in this field expands to
include a greater variety of pharmaceuticals.

The wealth of information on genetic polymorphisms now available through the Human
Genome Project has led to a dramatic increase in studies that seek to connect genetic variants
with toxicity and pharmacologic phenotypes. Because the base pair sequence variation among
individuals averages to be about 1 in 500–1000 base pairs50, it is reasonable to expect that a
significant number of genes will contain polymorphisms that contribute to disease and that
many will play a role in adverse drug responses. Most of the current research focuses on the
association between phenotype/disease and single nucleotide polymorphisms (SNPs). SNPs
are an attractive choice for biomarkers of adverse responses because, unlike other factors which

Harrill and Rusyn Page 5

Expert Opin Drug Metab Toxicol. Author manuscript; available in PMC 2009 January 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.geneontology.org
http://www.genmapp.org
http://stke.sciencemag.org/cm/
http://www.biocarta.com/genes/index.asp
http://www.genomeknowledge.org
http://www.genome.jp/kegg/pathway.html


contribute to a toxicity phenotype such as age, co-morbidity, and environment, an individual’s
genetic code remains stable throughout their lifetime. Genetic testing offers the potential of
replacing empirical dose adjustment for many drugs that is based upon therapeutic assessment
of pharmacologic or toxic effect after initial dosing. In addition, predictive genetic tests could
also be of value in the drug development process by rescuing drugs that failed Phase III clinical
trials due to toxicity within a subset of participants51. A key example of this is the genetic
testing available to patients with HIV who are prescribed the drug abacavir, in which screening
for major histocompatibility complex, class I, B (HLA-B)*5701 reduces the risk of
hypersensitivity reactions52.

3.2 Toxicogenetic models and approaches
A number of publications have reported a significant association between SNPs and disease
phenotypes in many areas of research; however few have been validated and have often been
followed by reports that refute the original conclusion53. Reasons for discrepancies between
genotype-and-phenotype are numerous, but are often due to a low sample size in the study,
population stratification of alleles, and heterogeneity of phenotypic classification54, 55. To
better facilitate a clinical translation of toxicogenetic data, efficient and validated strategies
are needed. Clinical data has been used to determine the genetic basis of complex traits such
as Parkinson disease56 and susceptibility to HIV infection57.

Classical approaches in this area have focused on mapping quantitative trait loci (QTL) within
the genome that influence a specific phenotype. While there are many approaches to identify
QTL, all involve a population of individuals with a measurable phenotype, a database of
genotypic variation present within that population, and statistical measures that serve to link
the magnitude of the phenotype with a specific genotype or polymorphism58. Classical
approaches have often sought to utilize the genotypic and phenotypic diversity present in F2
or backcross mouse populations; however, this approach is limited by the necessity to genotype
all individuals within a population. Due to the relatively low number of recombination events
in F2 and backcross populations, identification of precise QTL locations is often more difficult.
Recombinant inbred lines offer the advantage of fixed genomes, but these lines can be
expensive to acquire and maintain.

A promising new alternative is a method known as genomic association mapping in classical
inbred mouse lines, which takes advantage of the genetic variation that arose naturally across
inbred mouse lines over decades of crosses and inbreeding by scientists and fanciers. In this
approach, large SNP datasets for several dozen strains and a database of over 8 million SNPs
for 15 inbred mouse strains have recently become publicly available59. Computational
methods for this approach have been described58, 60.

Applications of genomic association algorithms to a toxicogenetic approach have been
performed in vivo within inbred mouse strains to determine additional genetic factors that affect
the metabolism of warfarin61. In that study, the metabolism of warfarin, specifically the
generation of 7-hydroxywarfarin, was shown to vary across inbred strains and this phenotype
was then computationally associated with the mouse genomic region that encodes for Cyp2c
enzymes. Experimental validation narrowed the list of potential genomic candidates to show
that Cyp2c29 polymorphisms altered hepatic protein expression of this enzyme. In a subsequent
publication62, this same group demonstrated the utility of the approach for use in an in vitro
drug biotransformation system in which genomic association was performed for downstream
metabolism of testosterone and irinotecan across 15 mouse lines. The results of these studies
showed that genetic variation within the Cyp2b9 and Ugt1a loci influenced the metabolism of
α-hydroxytestosterone61 and irinotecan glucuronidation62, respectively; these results were
then confirmed experimentally via recombinant enzymes. These results suggest that genomic
association using inbred mouse strains has the potential to aid in identification of toxicogenetic
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alleles, however further studies that demonstrate a clear translation to human populations is
required.

The genetic variation within panels of inbred mouse strains, while greater than that in RI lines,
can be somewhat limited due to the fact that the majority of classical inbred strains are derived
from Mus musculus domesticus. To address this concern, the Collaborative Cross mouse strains
were recently developed and were designed to incorporate large genetic variation63. To
develop this resource, a controlled breeding program was designed to randomize genetic
elements among the progeny derived from eight parental strains. A recent study demonstrated
that the genetic variation present in the Collaborative Cross represents the optimal
polymorphism architecture for the study of systems biology when compared to RI lines or to
panels of classical inbred strains, and was demonstrated to be more reflective of the genetic
variation expected in natural populations64. Further characterization of this resource may
improve the translational ability of toxicogenetic studies in rodents.

It has been suggested that genome-wide association studies that focus on only the top several
“most significant” SNPs may have some limitations that could be overcome by a pathway-
based approach. These limitations are that genes that contribute in a smaller, but still significant,
amount to disease risk may be overlooked, and that variants that confer a large effect may not
be included if hundreds of thousands of markers have been tested and the sample size is
relatively small. Wang et al. have proposed a method in which the power to detect causal
mechanisms of disease may be more robust because multiple contributing factors are
considered together, as opposed to focusing on a few SNPs with the highest association
score65. This approach, which combines genome-wide association with the gene-set
enrichment algorithm66, identified a number of pathways that may be associated with
Parkinson disease and age-related macular degeneration.

3.3 Expression QTL – bridging functional and structural genomics
Toxicogenomic and toxicogenetic approaches can be utilized in concert to study the regulation
of gene expression that affects the differential toxicity susceptibility between individuals.
When combined, these datasets have the potential to provide a mechanistic foundation for
determining key pathways where adjuvant therapies could be developed for the prevention of
toxicity in genetically sensitive individuals. While this field is still developing, a few proof-
of-concept studies were recently published that have integrated QTL analysis with gene
expression data; these include a determination of genes that were implicated in insulin
resistance67 and in allergic asthma68. Notably, this approach has been adapted to the
toxicology field by using recombinant BxD inbred lines derived from C57BL/6J and DBA/2J
mice to uncover genes that regulate acute alcohol withdrawal69 and that regulate
lipopolysaccharide (LPS)-induced airway disease70.

In a combined expression QTL (eQTL) approach, the gene expression across thousands of
genes serves as the phenotype for genome-wide association studies. eQTL data generate a
comprehensive picture of the regulation of gene expression on a global scale and of the
differences that exist between sensitive and resistant individuals. A recent paper evaluated
basal liver gene expression in the genetic context of BxD recombinant inbred and parental
mouse strains to identify polymorphic local and distant QTL that control expression of a wide
variety of genes in the liver69. When comparing this dataset to similar data generated from
nervous system tissue71, tissue-specific differences in the regulation of mRNA transcript
expression were identified.
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4. Data integration between -omics technologies
The need to better describe biological systems has led to the study of systems toxicology.
Systems toxicology comprises the integration of genetics, toxicogenomics and conventional
toxicity endpoints into a systems biology approach. These integrative approaches often use
mouse models for an improved characterization of toxicity pathways, the discovery of new
molecular and cellular indicators of exposure and outcome, better dose-response assessment
and for more accurate inter-individual/cross-species extrapolations (Figure 1).

While microarray-based approaches in toxicity studies generate a wealth of data on gene
expression and pathways that are affected by treatment or that are associated with a particular
phenotype, these data are most often descriptive and may not reflect changes at the protein
level. A key limitation of an analysis of toxicogenomic data alone is that these data often do
not take into account confounding factors such as the pharmacokinetics of the test
chemical72 and environmental factors, such the gut microflora population73. Genomic studies,
while more comprehensive than high-throughput metabolite or protein analysis, fail to
characterize the full complement of cellular proteins which are subject to post-translational
modifications and additional regulation74. To address this concern and to develop additional
toxicity biomarkers, metabolomics and proteomic approaches are gaining popularity, however
metabolomics data is more frequently utilized due to its relative ease of use and interpretation.

Methods of data integration for orthogonal omics datasets fall broadly into two categories: 1)
biology-driven strategies and 2) data-driven strategies75. Biological interpretations tend to be
more hypothesis-driven and take advantage of a contextual understanding of what is currently
known about the toxicity mechanism. An example of a biology-driven strategy is a study that
integrated gene expression data with metabolomics to identify sensitive biomarkers of human
neuroendocrine (NE) cancers76. In this approach, microarray and metabolite data was collected
fromNE in vivo mouse tumors, mouse NE tumor cell cultures, and primary human NE tumors
and the authors identified from the gene transcript data key metabolism pathways that were
altered and validated by mass spectrometry.

Data-driven strategies are comprised of unsupervised methods such as principal components
analysis, self-organizing maps, and regression-based partial-least square analysis. While
biology-driven interpretations have been more commonly reported, data-driven techniques
have been utilized to study diverse areas, such as hepatocellular metabolism77, the unique
effects of anti-inflammatory compounds on macrophage cells78, and the identification of
regulatory metabolites and gene transcription in glucosinolate and anthocyanin
biosynthesis79. Another comprehensive example is a ‘pharmaco-metabolomic’ approach in
which pre-dose metabolite profiles of urine and chemometrics were used to predict toxicity
responses to acetaminophen in an in vivo rat model80. Genomic, proteomic and metabolomic
approaches, when analyzed alone, are limited in their ability to describe the great degree of
nonlinearity and complexity that is present within biological systems.

Databases and approaches are currently being developed that can utilize the synergy between
these data types with the goal of placing toxicogenomics data into a larger biological
perspective. These include the Comparative Toxicology Database (ctd.mdibl.org), the
Distributed Structure-Searchable Toxicity database (www.epa.gov/ncct/dsstox/index.html),
the Critical Path Institute (www.c-path.org), and systems biology databases developed by
Genelogic, Inc. (www.genelogic.com), Iconix Pharmaceuticals
(www.iconixbiosciences.com) and Ceetox (www.ceetox.com). As more data is added to
publicly- and privately-funded databases, the data can be re-used and integrated to better inform
hypothesis-driven research81.
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5. Expert Opinion
Without a doubt, toxicogenomics offers great promise for risk assessment and omics
technologies have the potential to transform chemical safety testing and to improve clinical
intervention. A number of proof-of-principle studies have shown the utility of toxicogenomic
data to predict adverse health events and injurious phenotypes. Even though toxicogenomics
is unlikely to replace classical toxicological testing paradigms, it enriches the field by allowing
researchers to discover biomarkers and subtle changes that occur sub-clinically or that
predispose toward an injurious event. The reality is that omics technologies will become
increasingly integral to toxicity studies; therefore, it is important that toxicologists have
sufficient training and education to be able to design and interpret data from toxicogenomic
and toxicogenetic studies.

The realization of the full potential of omics data integration is still several years away due to
our currently limited understanding of the complex biology behind many toxicity types in a
variety of species. There has been much progress in developing experimental tools to collect
data, and some progress in data analysis and interpretation through pathway-based approaches
and identification of complex interactions between gene expression, SNPs, other cellular
macromolecules, and phenotypes. Focus should be placed on finding the optimal approaches
for the integration and interpretation of multiple data types together in order to fully
characterize molecular perturbations following exposure to a xenobiotic.

Another arena which requires significant attention from the toxicological community is in
improving the use of omic data in high-throughput screening in human and rodent cell lines.
Current methods which employ animal-based test methods tend to be expensive, are low-
throughput, and often use doses that are much higher than potential human exposures.
Toxicogenomic strategies that examine rodent in vivo with in vitro and human data are critical
for bridging the uncertainties between species. While the value of in vivo data can not be
completely replaced by in vitro screening tools, we anticipate that genomics tools will improve
the value of in vitro screening for risk assessment. One current limitation that must be overcome
is that very detailed gene annotation is only available for a few mammalian species, such as
man and mouse, but is relatively lacking in others, such as in rat. The availability of complete
gene information is critical for understanding and extrapolating toxicity risks across model
systems and species and, ultimately, to humans.

Furthermore, regulatory agencies, the pharmaceutical industry, and academics must establish
clear guidelines for the integration of toxicogenomic and genetic data into drug safety
assessment. Evidence of clinical or human in vitro translation of toxicogenomic is essential in
order to properly interpret the data and to be able to fully distinguish pathways that are
associated with toxic effect vs. a physiological or pharmacological response. In examining
datasets of sensitive “omics” data, it is necessary to distinguish between changes that are
adaptive in nature and those changes that are within a no observable adverse effect level
(NOAEL). Determination of chemical NOAELs can only be accomplished by dose-response
modeling of a variety of compounds in which a benchmark dose can be correlated with both
transcript changes and in vivo pathology; some progress has been made into developing
computational tools that enable genomic benchmark dose analysis82. The question of
determining the NOAEL becomes more complex as omics technologies become more refined,
with greater throughput and sensitivity, and as data from multiple platforms becomes
integrated.

The next wave of toxicogenomic and genetic research is the individualization of toxicity
prediction and the ability to tailor drug therapy for specific patients. This area will be greatly
facilitated by the development of easy and inexpensive whole-genome genotyping on an
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individual basis. In order to apply structural genomics data to pharmaceutical development and
to clinical safety testing, carefully designed rodent models are needed that can serve as
appropriate population-based models. While there is promising data that shows that genome-
wide association can predict human toxicity responses to xenobiotics, unequivocal data that
demonstrates that this method can identify human “susceptibility” genes is still lacking. Current
mouse models used for toxicity testing are not optimized for modeling the genetic diversity
present within human populations. Because genome association using inbred or complex
recombinant-inbred lines is an emerging technique, we expect that the animal models will be
refined to facilitate personalized assessment of efficacy and toxicity. We anticipate that
controlled mouse genetic breeding programs, such as the Collaborative Cross63 that enable a
superior precision in genetic mapping than current resources83, will revolutionize the ability
to detect the genetic control of toxicity in individuals. Translational research bridging rodent
and human toxicity will be the key to the success of this field and great emphasis should be
given to collaboration across laboratories and disciplines. This effort will require team research
within centers and consortia in order to be fully realized.
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Figure 1.
Information flow in systems toxicology.
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